Why are Accurate Requirements so Important?

o

o

_ ~
Requirements I

—
Acceptance l

I naccur acies Cripple Projects

The hardest single part of building a software system is deciding precisely what
to build. No other part of the conceptual work is as difficult as establishing the
detailed technical requirements, including all the interfaces to people, to
machines, and to other software systems. No part of the work so cripples the
resulting systemif done wrong. No other part is more difficult to rectify later.
Fred Brooks - "No Siver Bullet"

One of the most frequent causes of failure in software projects is a norn-existent
or inadequate statement of what the software is supposed to do. A rdatively
sndl amount of effort spent in accuratdy specifying software requirements has
repestedly generated large returns in developer productivity and customer
satisfaction.

Leverage Limited Resour ces

Improving your organisation’'s competence in requirements capture will apply
your limited resources a the point of greatest leverage to increase customer
sidaction and deveopment team productivity. Research has shown that
dthough requirements andyss consumes medy 5 pecent of software
production cost it affords 50 percent of the leverage to influence improved
quality and productivity.

Poor Requirements Waste M oney

A focus on qudity requirements cuts development costs. It takes 100 times more
effort to correct errors discovered in the maintenance phase than it does to correct
the same errorsif they are discovered in the requirements phase of a project.

Relative cost to repair bugs resulting from defective requirements by
project phase.

|
Design '
}.
Coding l
B
Unit Test [0

_|
taintenance !

(0]

Build Quality In

Correct requirements build qudity into your product from the sart. Attempting to
tes qudity into code a the end of a project is expensve and ineffective. The
probability that defects originating from defective requirements will be
completely rectified decreases as they are dlowed to propagate into designs and
code.

Data Flow Diagrams

A DFD is a graphical representation of a sysems component processes and the
interfaces (flow of data) between them.

3.0
Confirm
Regidration

Regidration

Above is a smple data flow diagram for a mal in univerdty course regidration
system. The rounded boxes represent processes, which portray the transformation of
data The sguare box represents an externd identity, which is an originator or
recaeiver of information located outsde the boundaries of the sysem being modelled.
The open rectangles represent data stores, which are either manua or automated
inventories of data. The arows represent data flow, which show the movement
between processes, externd identities and data stores. They aways contain packets of
data with the name or content of each data flow listed beside the arrow.

This data flow diagram shows that students submit registration forms with ther name,
identification number and the numbers of the courses that they wish to teke. In
process 1.0 the system verifies that each course sdected is Hill open by referencing
the universty’s course filee The file diginguishes courses that are open from those
that are full or cancelled. Process 1.0 then determines which of the students selections
can be accepted or rgected. Process 2.0 enrols the student in the courses for which
they have been accepted. It updates the university course file with the student’s name
and id number and recdculates the class dze. If maximum enrolment has been
reached the course number is flagged as closed. Process 2.0 dso updates the
universty sudent magter file with information about new <udents or changes in
address. Process 3.0 then sends each student gpplicant a confirmation of registration
letter ligting the courses for which they have been regisered and noting the course
sections that cannot be fulfilled.

Requested Courses 1.0 open courses
Student Verify
Avallability pmmmmmmmmm el
Course
A File
Accepted/ T A
Rejected
Sdections course course
details| enrolment
Confirmation v
|etter
2.0 <

Enrol
Study dudent details Student

The diagrams can be used to depict higher-level processes as wel as lower leve
detals. Through levdled data flow diagrams a complex process can be broken down
into successive levels of detall. An entire syssem can be divided into subsystems with
a high-level data flow diagram. Each subsystem in turn can be divided into additiona
subsystems with second level data flow diagrams, and the lower level subsystems can
be broken down again until the lowest level of detail has been reached.

Entity Relationship diagram

Database designers document the conceptud data model with an entity relationship
diagram.

Entity Attributes
Order Order_number
Order_Date
. Dédivery Date
1 Part_ Number
Part_ Amount
Order_Totd
Can
have
M
Part_Number
PART Part_Description
. Unit_Price
M Supplier_ Number
1

Supplier_Number
Supplier_Name

SUPPLIER Supplier_Address

The boxes represent the entities and the diamonds represent the relationships. The 1
and the M on dther sde of the diamond represent the rdationship among entities as
ether 1 to 1, 1 to many, or many to many. The entity ORDER can have more than 1
PART and a PART can only have 1 SUPPLIER. Many parts can be provided by the

supplier. The attributes for each entity are lised next to the entity and the key fidds
arein bold.

Entity lifeHistory
Entity life higories modd the sysem from the viewpoint of how information is

changed. What the entity life higtories show is the full st of dl information changes
that can possbly occur within the system together with the context of each change.

Bank
Account
Account Account Account Account
Opened Life Closure Deletion
*
Bdance
Change
/ \ 0
Credit Debit

An entity life higory is a diagrammatic representation of the life of a dngle entity
from its credation to its deletion. The life is expressed as the permitted sequence of
events that can cause the entity to change. An event may be thought of as whatever
brings a process into action to change entities, so athough it is a process that changes
the entity, it isthe event that is the cause of the change.

0 Seguence
The boxes read left to right from account opened to account deleted. This is the
only possble sequence and there is no indication of the time between the boxes
in a sequence.

0 Sdection

The boxes with a O over the top rh corner are aternatives for one another; each
balance change is ether a debit or a credit. Nodes that are dternatives to each
other.

0 lIteration
The box with the * over the rh corner represents an iteration, many baance
changes can occur one after another. A node that may be repested many times
over.

Diagrams using these 3 components are caled “Jackson sructures’ (or Jackson
diagrams) after Michael Jackson who pioneered their use as a technique for program
designinthe early 70s.

All entity life higtories can be built usng just these 3 components. Certain complex
gtuations can be smplifies usng 2 other conventions

0 Padld Sructures

0 Quit and resume.

A pardld dructure is used where nodes occur in no predictable sequence

Entity X
A B C D
0 0 *
F G H
| J
*
K L M N

This represents the Stuation where the sequence of K, L and M occurs at this point in
the Entity life higory and the event N may affect he entity a number of times during
this sequence.

The quit and resume convention is used in dtudions where the diagramming
conventions excessvely condrain the entity life higory or force a very complex
atifica dructure in an atempt to modd a paticular dtuation. The use of this
convention dlows a quit from one part of an entity life hisory diagram to resume in
another part of the diagram.

The representation of user requirements is a crucid aspect of the systems andyss
process. The qudity of implementation models used to build a system, and of the
ultimate system itsdf, are dependent largely on the extent to which systems andyss
modds faithfully represent users requirements (Jarvenpaa and Machesky, 1989).
Further, the need for users to vdidate requirements documents necesstates systems
andyss modds tha communicate requirements clearly and effectivdy (Larsen and
Naumann, 1992). Modding devices may be more or less forma, and the degree of
formdity has implications for user undergtanding (Fraser, Kumar, and Vashnavi,
1991, 1994). However, there have been no empiricd tests of the degree of formdity
that is optima in sysems andyss modds. The present research seeks to help fill this
gap by providing an empirica test of various representationa devices.

A variety of methods have been developed to help structure the systems andysis and
design process and to communicate System requirements. The methods vary in terms
of ther degree of formdity. For example, Dat et d. (1987) classfied methods as
“informd,"” "semiformd,"” or "forma" (see dso Fraser et d., 1994). Informa methods
ae those that do not have complete sets of rules that regulate the types of
representations that can be created. Examples of these methods include natura
language text and informd pictures or diagrams. Semiformad methods have specified
rules for creating the representations. Examples include data-flow diagrams (DFDs)
and entity-rdationship diagrams (ERDs). Formd methods are those with a
mathematical foundation and rigoroudy specified syntax. Examples include petri nets
and executable specifications (see dso Denning, 1991).

Semiformd diagrams can be used to develop implementation-oriented models that
guide sysem builders in the condruction of applications. However, these diagrams
may be difficult to use in the communication process between andysts and users
(Lohse, Min, and Olson, 1995). For example, Fraser et a. (1994) date that "The very
formdity which mekes formd gpecifications desrable during the later phases of
requirements specification makes them an ingppropriate tool for communicaing with
the end user during the earlier requirements dicitation and confirmation stages' (p.
75). Lasen and Naumann (1992) note that eadly understood and verifidble
representations are not useful for system condruction, and representations with
enough detall, precison, and rigor for building sysems ae not likdy to be
understandable to users. Despite these concerns, the predominant methods
recommended by systems andyss and design texts for representing user requirements
ae semiformad methods (eg., Whitten, Bentley, and Barlow, 1994). However,
techniques used in practice often include informad methods (Fraser et d., 1991,
Fuggetta et d., 1993), despite the fact that there is little guidance for the anayst in the
use of such methods.

Users will understand information requirements represented using informal
representational devices better than they will requirements represented using
semiformal representational devices.

What isa " User Interface?"

The term "User Interface’ refers to the methods and devices that are used to
accommodate interaction between machines and the human beings who use them
(users). User interfaces can take on many forms, but adways accomplish two
fundamentd tasks communicating information from the meachine to the user, and

communicaing information from the user to the machine. Any machine that requires
interaction with human beings will have some sort of user interface. The devices that
ae used to implement user interfaces on modern computers are video screens,
keyboards, and pointing devices such as mice and track balls.

The Evolution of User Interfaces

The very fird computers had user intefaces that were as rudimentary as the
computers themselves. The computer communicated information to the user through
flashing lights, and the usr communicated information to the computer by setting
mechanical switches Only highly traned <specidids wee ade to actudly
communicate directly with a computer.

The next sage of evolution had computers communicating to users through printing
devices, and the users communicating to the computer through punch cards. This was
an improvement, but sill cumbersome and inefficient. It was 4ill rare that anyone but
acomputer specidist would actualy communicate directly with a computer.

User interfaces left the dark ages when video screens were used to communicate
information from the computer to the user, and typewriter-syle keyboards were used
to communicate information directly to the computer. This mgor innovation heped to
dlow "ordinary" users to communicate directly with a computer. But since the video
screens were limited to displaying only the characters tha were found on the
keyboard, the usefulness of the user interface was congrained by the same limitation.
Users were required to memorize commands that were generdly tallored more to the
computers than the users. A great ded of training was required before anyone could
make use of the computer.

User interfaces entered the modern era when innovetive designers at the Xerox Pdo
Alto Research Center broke away from the character-based interface paradigm and
invented the Grgphic User Interface (GUI). There were two mgor factors that
separated the new paradigm from the old. One was the use of graphics to
communicate information to the users visudly in addition to textudly. The other was
to present a finite number of options to the users rather than requiring the users to
memorize and manudly enter commands from a virtudly unlimited st of options. In
this way the interface was focused on the needs of the human beings, rather than the
other way around. This sgnificantly reduced the training that was necessary to use a
computer, and for the firsg time uninitiated users were able to become productive
amog immediately.

The advent of these intuitive and easy to use desgn dements does not, however,
ensure that interfaces which incorporate them will be intuitive ad easy to use. As
much as anything ese, the advent of the graphic user interface has served to heighten
awareness of generd dedgn principles that apply irrespective of the paradigm in
which a user interface is implemented. This document discusses those principles as
well asthe GUI design dements and the best waysin which to use them.

" Quality" User Interfaces

The objective of any user interface developer should be to desgn and implement
quaity user interfaces. It's not aways that easy to define what is meant by a "qudity
user interface” A "qudity user interface" shdl be defined as any user interface that is

intuitive, essy to use, and dlows the usars to maximize ther effidency and
effectivenesswhen usng it.

The best way to ensure quality user interface design is to use an orderly and well
defined design process that is specificdly geared to producing qudity results. This
aoplies to the design of the agpplication that the user interface supports as well as the
design of the user interface itsdlf. The best user interface in the world will not be well
recaived if the gpplication itsdlf is poorly designed.

An Overview of the Design Process
Below are some typica phases.

| Phase Description

| Requirements Determine the requirements for the gpplication

| Conceptud Design | Mode the underlying business that the gpplication will support

ILogical Design Design in generd terms how the gpplication will operate

| Physicd Design Design in specific terms how the application will be congtructed

I
Consgtruction Construct the application

IUsabilityTesting Test the usahility of the user interface

The Requirements Phase

If the application is to be accepted by those who have a stake in it (stakeholders), it is
imperative that they be involved from the very beginning. They should be sought out
and polled as to wha they congder their requirements for the gpplication to be. The
more broad a representative group of stakeholders is involved, the more broad the
acceptance will be when it is ddivered.

Below are some steps that will help lead to a successful requirements phase.

Assemble the design team
o ldentify al stakeholder groups.
o Sdect representatives to participate on the design team.
Gather Requirements:
o Interview as many stakeholders asis practicad to determine:
= What the underlying business problems are that this application
should address
= What benefits the gpplication should provide
= What the critical successfactorsare
Define the scope of the project
o Review the requirements that have been gathered
o Make decisons about what will be included and what will not
o If the scope of the project gets too big, consider bresking it down into
stages.

Any user interface, no matter how well designed, won't be well recaived if its users
fed disenfranchised from the design process.

The Conceptual Design Phase
This phase is concerned with modeling the underlying business that the application
will support. User interface consderations are not addressed at thistime.

L ogical Design

The Logicd Dedgn phase gets into more pecifics about how the gpplication will
support the busness that was modded in the Conceptud Design phase. The
prototyping of user intefaces should kick off the Logicd Desgn phese. By
determining what events will occur on the client (eg. clicking a button or sdecting
something from a scrolling list), the logica processes that support them can be
designed. These events and processes are then broken down into "system functions.”

The requirements about what the user interface should be able to do can drive the
decision of what technology ultimately gets selected.

Along these lines it is important to determine the minimum hardware configuration
the application will cater to. For example, a paticular user inteface might look very
good on a large color monitor, but be very difficult to use on a smdl black and white
monitor. The decison must be made as to whether the user interface will cater to the
gmdl black and white monitor, or if it's okay to design around the large color monitor.
Both solutions are vdid, depending on the circumstances, but it must be a conscious
decison.

Physical Design
This phase is concerned with determining how the logica design will be implemented
on specific physcd platforms.

This phase will not directly impact user interface desgn, unless it is reveded that it is
not possible to physicaly implement certain aspects of the logica design.

Construction

When the users get something in ther hands that actudly functions, they will
inevitably change their minds as to how they want things to work.

For this reason it's important to get functiona interfaces in the users hands as early as
possible. If they request a change that winds up being somewhat fundamentd, less re-
designing will be required the earlier the changeis identified.

Usability Testing

Usability Tedting is a technique that can vdidate the user interface desgn and reved
aress in which it requires refinement. The basic concept is to Smply observe users as
they operate the interface. They should be ingtructed to verbalize therr thought process
as they go dong. For example, they should be saying things like, "I want to find an
invoice for a customer. | see a button that says, ‘Invoices,’ but 1 don't know if thet will
display one or creste a new one..." By understanding what the testers are thinking it

will be possible to ascertain where they are having problems understanding and using
the user interface.

It should be noted that this is often more an exercise in testing how easy a user
interface is to learn than how easy it is to use. If the learnability of the user interface is
the primary god of the desgn, uninitisted users should be sdected, they should be
given minima indruction or guidance, and the observers should look for aress in
which the testers are having trouble figuring the user interface out. If the ease of use
of the interface is the primary goa, novice usars should be sdected and the observers
should look for areas in which the testers are having trouble generdly using the
interface or remembering how certain things work.

Either way it is very important that this technique not be used as a subditute for
fundamentd interface desgn. Usability testing is a process of vdidation and
refinement. It is not part of the design process itsdlf.

The more tedters that participate in this exercise, the better the results will be. If one
or two users have trouble in one particular area, that might not necessaily indicate a
problem. But if a mgority of testers run into the same problem or smilar patterns
emerge, it can be apparent that certain parts of the user interface require attention.

Concepts of User Interface Design

L ear nability vs. Usability

Many people consder the primary criterion for a good user interface to be the degree
to which it is easy to learn. This is indeed a laudable qudity of any user interface, but
it is not necessarily the most important.

The god of the user interface should be foremost in the design process. Consder the
example of a vigtor information sysem located on a kiosk. In this case it makes
perfect sense that the primary god for the interface desgners should be ease of
operation for the firg-time user. The more the interface waks the user through the
system step by step, the more successful the interface would be.

In contrast, condder a data entry system used daly by an office of heads-down
operators. Here the primary goa should be that the operators can input as much
information as possble as efficiently as possble. Once the users have learned how to
use the interface, anything intended to make fird-time use easer will only get in the

way.

User interface design is not a "one sze fits dl" process. Every system has its own
congderations and accompanying desgn gods. The Reguirements Phase is designed
to dicit from the design team the kind of information that should make these gods
clear.

Metaphors and |dioms

The True Role of Metaphorsin the GUI

When the GUI firg entered the market, it was herdded most of dl for its use of
metgphors. Careful condderation of what redly made the GUI successful, however,
would gppear to indicate that the use of metgphors was actudly a little further down
in the lig. Metgphors were redly nothing new. The term computer “file' was chosen
as a metaphor for a collection of separate but related items held in a single container.
Thisterm dates back to the very early days of computers.

The sngle most significant agpect of the GUI was the way in which it presented all
possible options to the users rather than requiring them to memorize commands and
enter them without error. This has nothing to do with metaphor and everything to do
with focusing the user interface on the needs of the user rather than mandating that the
user conform to the needs of the computer. The visud aspect of the GUI wasdso a
tremendous advancement. People often confuse this visua presentation with pure
metaphor, but closer inspection revedsthat thisis not necessarily the case. The
"desktop" metaphor was the firgt thing to hit users of the GUI.

Metaphor s vs Idioms

Most visua eements of the GUI are better thought of asidioms. A scroll bar, for
example, is not ametaphor for anything in the physica world. It isan entirdy new
congruct, yet it performs an obvious function, its operation is easily mastered, and
users eadly remember how it works. It isthe visua aspect of the scroll bar that alow
it to be learned so quickly.

Metaphors Can Hinder AsWell AsHelp
The use of icons as metaphors for functions is a good example. It can be a gamble if
someone will understand the connection between an icon and the function.

% |E|mm] « === (9] Tl AL A7 ()2

Consder the Microsoft Word 5.0 toolbar. Some icons area readily identifiable, some
are not. The unidentifigble icons can be utterly perplexing, and rather than helping
they can create confuson and frusration. And with so many pictographs crammed
into such a sandl space, the whole thing reads like a row of enigmatic, ancient

Egyptian hieroglyphs.

(=13
S
Open

Lim]

Back

oS

Farward

(€

Reload

)

Haorne

3

Irmages

B

Find

Print

Stap

The Netscape toolbar, by contrast, can be consdered to be much more graceful and
useful. The buttons are a bit larger, which makes them generdly more readable. Ther
added sze ds0 dlows the induson of text labes indicating the command to which
the icon corresponds. Once the meaning of each icon has become learned the icon can
serve as a visud mnemonic, but until then the text labd cdearly and unambiguoudy
relays the function the button will initiate.

In the right Stuation they can be a vitd part of a quality user interface. The folder is a
particularly useful and successful metaphor.

I ntuitiveness

It is generdly percaived that the most fundamental qudity of any good user interface
should be that it is intuitive. The problem is that "intuitive’ means different things to
different people. To some an intuitive user interface is one that users can figure out
for themsdves There are some indances where this is hdpful, but generdly the
didactic eements geared for the firg-time user will hamper the effectiveness of
intermediate or advanced users.

A much better definition of an intuitive user interface is one that is easy to learn. This
does not mean that no indruction is required, but that it is minima and that users can
"pick it up" quickly and easly. Fird-time usars might not intuit how to operate a
scrall bar, but once it is explained they generaly find it to be an intuitive idiom.

lcons, when clearly unambiguous, can help to make a user interface intuitive. But the
user interface desgner should never overlook the usefulness of good old-fashioned
text labels,

Labels should be concise, cogent, and unambiguous. A good practice is to make labels
conform to the terminology of the busness tha the application supports. This is a
good way to pack alot of meaning into a very few words.

Deggning intuitive user interfaces is far more an at than a science. It draws more
upon sKkills of psychology and cognitive reasoning than computer engineering or even
graphic dedgn. The process of Usdbility Teding, however, can asses the
intuitiveness of a user interface in an objective manner.

Consistency

The gandard GUI design dements go a long way to bring a leve of consstency to
every pand, but "look and fed" issues must be consdered as wdl. The use of labds
and icons must aways be consstert. The same labe or icon should dways mean the
same thing, and conversdly the same thing should aways be represented by the same
label or icon.

User interface dedgners should aways provide permanent objects as unchanging
reference points around which the users can navigate. If they ever get lost or
disoriented, they should be able to quickly find the permanent objects and from there
get to where they need to be.

Simplicity

The most graceful solution to any problem is the one which is the mos smple. The
fewer things users have to see and do in order to get their work done, the happier and
more effective they will be. A pitfal that should be avoided is "featuritis” providing
an over-abundance of fegtures that do not add vaue to the user interface. Features
should not be induded on a user interface unless there is a compelling need for them
and they add sgnificant vaue to the gpplication.

Prevention

A fundamenta tenet of graphic user interfaces is that it is preferable to prevent users
from peforming an ingppropriate task in the firs place rather than alowing the task
to be performed and presenting a message afterwards saying that it couldn't be done.
This is accomplished by disabling, or "graying out” cetan eements under certain
conditions.

Aesthetics

Findly, it is important that a user interface be aestheticdly pleasing. It is possble for
a usy interface to be intuitive, easy to use, and efficient and Hill not be terribly nice
to look a. While aesthetics do not directly impact the effectiveness of a user interface,
users will be happier and therefore more productive if they are presented with an
attractive user interface.

User Interface Design Elements
The Pdlette

Windows

Events

The Paints
- Pull-down Menus/ Drop-down Menus
Push Buttons
Icons
Checkboxes
Radio Buttons
Scralling Ligts
Text Fed
Popup List
Spin Boxes
Siders

Windows
The most pervasive dement used in GUIs is the window. It could be consdered to be
a metaphor for a "window" into the computer, but it is dependent on idioms for its
operation. The video screen itsdf can be consdered to be a window into the
computer. In character-based interfaces it was the only window into the computer and
was not redly thought of as such. The GUI paradigm, however, dlowed for the user
to see into multiple areas within the computer, and the window metaphor was born.
S[I=———— Bear Access { ————15]

22 itemns T70.3 MEB in disk 259.8 MB available

S & 1 F

Eudora Metzcape § Mandarin Tools f

Employes Eszentialz f

Events

An "event," with respect to user interfaces is any function initiated by the user.
Sdecting something from a pull-down menu, clicking a button or a checkbox, and
closng awindow are al examples of events.

Pull-down Menus/ Drop-down Menus

Pull-down menus are menus that the user can "pull down" from the menu bar tha
traverses the top of the screen. On some platforms these are caled "drop down"
menus because the user does not need to hold the mouse button down in order for the
menu to remain visble

I[TR ortions |

Save As PICT #T
« Sauve As GIF G
Save As JPEG 3d
Interlaced #1
Transparent Background 2T
Gray Shades H®R

Push Buttons

A push button is Smply a rectangle that gppears on a panel with some sort of labd or
icon indde it. The metgphor is to any button youd find in the physicd world, such as
on a cdculator or telephone. Clicking on a push button will cause some sort of action
will occur. Sometimes a pand will have a "default” button, which appears with an
enhanced border. This button will be activated when the Enter key is pressed.

IIIIIII é Einnt

[Eancel]é[ﬂesktup]

Icons

lcons are smal pictures that are generaly represent objects in the physcad world or
are used as metgphors for functions or actions. lcons can be "clickable’ and used to
initiate an event. These are sometimes referred to as "buttcons” as they become
hybrids of buttons and icons.

(&S| - »

Checkboxes
A checkbox is a andl sgquare with some sort of labd beside it. Clicking on a
checkbox will cause an X' to appear in the box. Clicking it again will cause the X' to

disappear.

& Checkbox On
] Checkbox Off

Radio Buttons
A radio button is smdl circle with some sort of label besde it. A black dot insde the
circle indicates that the button is sdected. The absence of a dot indicates that the
button is unsdected. With the radio button form object, clicking on one option will
cause whatever other option that had been selected to become unselected.

When applicable, radio buttons should be placed in alogica order.

Don't use radio buttons for binary choices (eg. YesNo). Use check boxes for

this.
@ Selected
3 Unselected
Scrolling Lists

Scralling ligts are lists of dements that appear in a box with a scroll bar on the sde,
dlowing the usr to scrall through the dements in the lig. In this way the lig can
contain more eements than can be displayed a any one time. Clicking on an eement
in the list will cause that e ement to become selected, as shown below.

I
Element 1 - Element 1 -
Element 2 E Bl Element 2 B
Element 3 % Element 3 %
Element 4 & | |Element 4 e
Noting selected "Element2" selected

Optiondly, a lig can dlow multiple sdections. These can ether be contiguous or
discontiguous, as shown below (respectively).

I
Element 1 ia @il Element 1
Element 2 =| | [Element 2
Element 3 @ Element 3
Element 4] | [Element 4 -
Contiguous selection | Discontiguous selection

Text Field

A text fidd is amply a space in which the user @n type text. Text fidds are usudly
contained within arectangle, but it could just be space on a panel that can accept text.

[Teut Field |I

If a text fied is contained within a rectangle, it can optionaly have a scroll bar to
dlow it to contain more information than can be diplayed at any onetime.

This is a scrolling test field. The [i¢
scroll bar allows the field to
contain more information than
can be displayed at any one

Popup List

A popup list gppears initidly as a box containing some sort of labe. When the user
clicks on the box, a larger box containing a variety of choices will "pop up." By
moving the mouse, the user can cause another choice to become sdected. When the
user releases the mouse, the popup menu will dissppear leaving currently selected
choice to appear in the box.

Measure in: M{ Inches
[Centimeters | [FEICTINEATEE

Points

Pixels

Picas

Millimeters

Spin Boxes

A soin box is a box containing some vaue, with up and down arrows on one side and
generdly a labd on the other. By dlicking the up or down arow, different vaues will
appear in the box. The entire range of choices can be cycled through if the up or down
arows are clicked enough times. Whatever value gppears in the box is the vaue that

is selected at thet time.
Measure in:| Centimeters ||§|I
Sliders

A dider is along box with a control that the user is adle to dide one way or the other.
Often a dider will have an arrow button at either end to dlow the user to adjust the
dider one unit a a time. Also there is often a text field to the Sde of the dider that
will indicate the vaue that the dider is currently set on and alow the user to enter a
specific vaue.

Red: [M| 7] [50]%

Designing the User Interface
Display Thingsto the User
- Digplay alittle text
Digolay alot of text
Digplay aligt of objects
Display ahierarchicd list of objects
Digplay awarning, confirmation, or other brief message that presents alimited
vaiety of actions

Where To Begin

It is dways good to start with the primary gods of the user interface. This wil reved
whether the focus should be on didactic qudities or efficiency. Once the god is
clearly established, a good approach is to focus on the specific tasks that the user
interface will be required to peform in order to fulfill the god. Then it's only a matter
of deciding which design dements will best perform these tasks.

An enormous portion of the job of any user interface is to display information to the
user. One could argue that this is the entire reason tha computers exist in the first
place.

Display a little text
This can easlly be accomplished by smply displaying the text anywhere on the pand.
Often it is accompanied by an icon of some sort to associate the text with a function

or physical object.
' = Hard Drive
622,303K available
Display a lot of text

If the soace in the pand permits, the text can Smply be displayed. But if the amount
of text exceeds the space avalable, it can be placed in a scrolling text fied. Often
consderably large amounts of text will be broken down by topic or category, as in the
example of the Microsoft Word help dialog shown below.

S0=—————————— Help

Windows

‘Word displays each apen document in a separate
window. Open document windows are listed at the
battorn of the Window menu. The i decsmes?
contains the insertion point or selected text. s name is
checked an the Window menu.

You canopen up to 23 windows at a time. You can
compatre different parts of the same document ar wiew a
docurnent in different views by opening the same
docurment more than once, or by splitting a document
window. Changes you make in one window are reflected
in the other windows that are open far that document.

I'n addition to standard Macintosh window elements,
‘Word document windows contain the following:

® /& page number area, which displays the page
nurmber of the current page (dimmed if you edit
after paginating}, prompts, and status information.

Display alist of objects

As with text, the presentation of a list of objects is generaly determined by the sze of
the lig and the amount of space available on the pand. If the space permits, the list
can just be displayed as if it were text. But if the size of the list exceeds the space

available, it can be digplayed in ascralling lidt.

CComet §

[Developer §
CEmployee Essentials f
CJEudora §

CFetch §

[T Gopher {

C1Information Resources §

|=3 Bear Access f v | =—Hard Disk

it

Desktop

Display a hierarchical list of objects

This can be accomplished, as in the example from the Macintosh Finder below, by
placing a combination of icons and text in a scrolling window. The same technique

was used by Netscape for presenting bookmarks in their 2.0 version.

=[[I== Bear Access =3 | E@== Bookmarks =3
Marne ks |'i|§°] Chris Brown's Bookrarks i
[[Comet § = [T1ww Development Stuff
b O Developer f _l ‘web Search - dec
b 03 Employee Essentials f _I HTHL Special Characters
@ Eudors b COHTML Tutorials
= [Eudora f -
- [Spellzwell _I Netzcape.com
O Drigtionary _l Shareware.com
& m I backgrounds . hirnl
P [0 Feteh f icons
[+ [Gopher f {::|| ||:::>

i

Display awarning, confirmation, or other brief message that presents alimited variety
of actions

This can be accomplished by opening a didog box and displaying the text of the
message and a push button for each possible action.

5ave changes to the document
Untitled - 1 before closing?

Cancel

Screen Design
Effective screen design guiddines

1
2.

Screens should be attractive and uncluttered
Information on a single screen should be displayed in ameaningful, logica
order

3. Screen designs should be consistent

4. Messages should be specific, understandable, and professiond

5. Messages should remain on the screen for an appropriate period of time

6. Specid effects should be used sparingly

7. Users should receive feedback

8. Screen designs should be documented and approved as soon as possible
Data entry screen design
Guiddines

1. Redtrict user access to screen locations where datais entered

2.

oUW

B2 oo~

11.

12.
13.
14.
15.
16.

0.

Provide a descriptive caption for each fiedd and show the user where to enter
the data

Show a sample format if oneisrequired

Require ending keystroke for every field

Do not require usersto enter specid characters

Do not require users to type leading zeroes or trailing spaces for dphanumeric
fidds

Do not require users to type trailing zeroes that follow a decimad point

Display default values that users can accept

Use default values for congtant deta

Digplay a lig of acceptable vaues for fidds with a limited number of vdid
choices

Provide a way to leave the data entry screen without inputting the current
record

Provide an opportunity to confirm the accuracy of input data before entering it
Provide ameans to move among form fields in a standard, or in another, order
Design the screen form to match the layout of the source document

Allow the operator to add, change, delete, and view records

Design amethod to allow operators to search for a specific record

Process control screen design
Users can control system actions with interactive menus and prompts

Menu screens

Menus display alist of user-salectable options

Menu-driven system uses a hierarchy of main menus and submenus
Shortcut key combinations can be used in amenu design

Prompt screens

User types aresponse to a prompt

Responses can include commands

Structured Query Language (SQL) can be used

Question/answer screens can be used

Natural language techniques can be used, smilar to Internet search
engines

Help screen design
Severd methodsto obtain Help
Click acommand button or tool bar
0 Pressaspecid key
Context-sengtive Help
0 Provides Help onthe task in progress
User-sdected Help
Hypertext
0 Useslinksto display additiond information on related topics
Help Screen Design guiddines
0 Provide a direct route for users to return to the program after Help is
obtained
Title every Help screen
0 Useeasy, ample, understandable Help text
Present attractive, uncluttered screens
Provide appropriate examples
Use hyperlinks
Include contact data for persons or departments responsible for assisting users

Sour ce Document Design

Source documents
Request and collect input data
Can trigger or authorize input actions
Provide arecord of the origina transaction

Form Iatyout guiddines
Allow sufficient space
Offer clear indtructions
Providelogicad organization
Use captions effectively

Form zones
- Heading zone
Control zone
Ingtruction zone
Totals zone
Authorization zone

Source documents can be externd or internd

Input Record Design
Input record layout chart
To design and document batch input records

Multiple record designs are used for transactions that involve congtant and
repesting data

Congtant fields (non-repeating data)

Repedting fidds

Informetion flow on aform
Should belogicd and easy to follow
Poor design resullts in forms that are difficult to use, time-consuming, and
prone to error

